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THE DIFFUSION APPROXIMATION FOR TANDEM QUEUES IN HEAVY TRAFFIC

J. Michael Harrison

Graduate School of Business
Stanford University

1. Introduction

We consider in this paper a two-dimensional diffusion process that

arises in conjunction with the following type of cueuing system. The system

is composed of twe single server facilities (or stations) arranged in tandem.

Customers arrive individually from outside the system and cueue up for
service at the first station. Having completed service there, they proceed
to a gueue in front of the second station, and after completing service
at the second station they depart the system. Service is by order of
arrival at each station.

We assume that the system is empty at time - and that the inter-
arrival times and service times at the two station. . 1 three mutually
independent seauences of IID random variables, The interarrival times are

distributed as a random variable vO having mean ao and finite variance

>
{ =

iy» @nd the service times at station k (k = 1,2) are distributed as a

random variable vk with mean ak and finite variance .R.
the traffic intensities iy = a.k/aO (k = 1,2). The system is said to

. 15

We define

be stable if Vi < 1 for each station k, and a situation of heavy

traffic is said to prevail if Ok is near one for each station. For a

stable system we further define

\ .,..l’._z | lac \




E. (t = (ao-al\ A (&o’&p) : ah((l-pls A (l-n“}l

Thus a stable system is in heavy traffic when «« is positive bul near

zero. Finally, it will be convenient to define

Wy "1 1
v and T = y
Hoy 010
9 o p) 5 D y ) ]
= vo + y o £ v, iy ATy . = - W/ (
where o =715 * vy, 09, Y12 05 = Y7 * Yoo uy (al a,)/x and

T (a)-al)ﬂx. Note that «; and ¥ are the mean vector and covariance
o 2

matrix respectively of the random vector (vl-vo, m)-v". Because we do

not require that the variances r; be strictly positive, $ need not be
positive definite, but it is non-negative definite in any case.

Let wﬁ be the waiting time (exclusive of service time) at
station k for the nth arriving customer, and let Wn = (Wi, w;.. 11
the system is stable, it is well known that there exists a random vector
W = (wl,w“> such that W ==>W as n -, where -=> denotes weak
convergence (convergence in distribution).

In an earlier paper [2], a limit theorem was proved to show that

in heavy traffic the distribution of W can be approximated by the

limit distribution of a certain stochastic process 7 = {Z(t}, t > Of.

The process 7 was defined as an explicit, but relatively complicated,
transformation of a three-dimensional Brownian Motion. Its limit :

distribution was determined for one special case (in our current notation,
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') o o
the case yb = rl =y.) by an invariance principle argument, but the

general problem of evaluating the limit distribution was left open. It

is to this problem that we now return. The current discussion is restricted
to the case of two queues in tandem, but most of what will be said extends
readily to the general model with K stations in series.

In Sections 2 and 5 we repeat the definition of % and show that
it is a diffusion process (continuous strong Markov process) whose state
space is the non-negative quadrant. More specifically, on the interior
of its state space the process behaves like ordinary Brownian Motion
with drift vector , and covariance matrix ¥, and it reflects instan-
taneously at each axis (boundary surface). At one axis (the one corresponding
to an empty second station in the original queueing system), the direction
of reflection is normal to the axis, but at the other axis the reflection
has a tangential component as well. In Section 35 we also display .he
(weak infinitesimal) generator of Z.

In Sections 4 through 6 we demonstrate that the limit distribution
of Z 1is the solution of a first passage problem for a certain dual
diffusion process Z¥*, Using the analytical theory of Markov processes,
we then derive in Section 7 the following partial differential equation

(with boundary conditions) for the density f of the limit distribution.

B 2 e I e
[5 Ulfll $ 0121’123 + 5 ogfgg “lfl - LJgf;?‘] (Eryii= 00,
2 1

lo3pT10 + 5 0pf, = uf1(x,0) =0,
1.2 1 2
(7 o1y *+ (G o] +0,)f, - wfl0,y)=0 .




e | (Here, and later in the paper, we use the notation

S B e
£,(6,y) = = f(x,y) , f‘l,(x,y) . ix.x) »

and so forth.) In Section © we show that the 1limit distribution has

independent components iff 01 + 'qih = 0, in which case each component is
exponentially distributed. This expands slightly the class of solutions

obtained previously in [2]. Finally, in Section 9, we explicitly solve !

for f when % 1is the identity matrix and ,, = O. (In terms of the

)
¥ o

F original tandem cueuing system, this corresponds to the case ré = Yy

deterministic services at the first station, and pl = p”.} The distri-
bution does not have independent components.

The explicit solutions obtained here are certainly fragmentary,

B A N ——————————

b but we hope that they can help to stimulate and direct the interest of

others in this problem. To determine explicitly the general solution
of the partial differential equation displayed above, one must overcome
some significant analytical difficulties. Relatively little effort hLas
| been devoted to the problem thus far, however, and an explicit general
solution may in fact be obtainable.

Finally, we note that tandem gueues are the simplest case of a
queuing network, so any analytical insights obtained here should be
valuable in determining heavy traffic approximations for the general net-
work model. Limit theorems justifying diffusion approximations for general

networks will be presented in a forthcoming paper by Reiman |5],

together with analytical characterizations of the relevant diffusions.




2. A Reflection Mapping in Two-Dimensions

Let B denote the set of functions x(-) = (x](-), x.())
that map |[0,») into R~ and are bounded on finite intervals. Let
B, be the subset of such functions that are non-negative and non-decreasing

+

For x€ B let C(x) be the set of all £ C B, such that

(t) + &.(t) >0 for all t >0
and

x,(t) - & () + £,(¢) 20 for all t >0 .

It is obvious that C(x) is non-empty. Moreover, it has a minimal element,

meaning that there exists y ¢ C(x) such that yl(t‘ < ‘1(t3 and
¥,(t) < £,(t) for all & ¢ C(x) and all t > 0. This minimal element is

explicitly given by

y](t\ = Sup [-xl(u)l+
O<u<t
(1)
+
y.(t) = sup (=[x (u) - yl(u)l]+ = sup {'-xl(v>%+- x. (u)} .
‘ o<u<t e O<vsuct

We define a mapping f = (fl,fq):B - B, by setting y, fl(x an
vy, = £,(x). Also, we define g = (gl.g,\:B - B by setting g]fxi =X, Y,
and g”(x) Xy = ¥y P P

An interpretation of the mappings f and g is as follows.

Imagine a man (hereafter called the contruiler) who monitors Lwo bank

accounts, the contents of which fluctuate due to uncontrollable deposits
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and withdrawals, In the absence any intervention by the controller,

the content of account k at time t will be xk(t\. In particular,

the initial contents of the two accounts are xl(o) and xP(O). The
controller has the ability to transfer money from account ” to account 1,
and we denote by gl(t) the total amount of money so transferred during
the interval [0,t]. He also can deposit money (gotten outside the
system) in account 2, and we denote by é?(t) the total amount deposited
during [0,t]. The pair £ = (61’59) is called a control. If we suppose
that the controller is required to keep the content of each account non-
negative, then C(x) represents the set of feasible controls. If we
suppose that the controller wants to minimize the total volume of his
transactions (in the strongest possible sense), then y = f(x) represents
the optimal control, and the content of account k at time t will be
zk(t) when the optimal control is employed, where =z = g(x).

The effect of the reflection mapping g is portrayed graphically

in Figure 1 below. Suppose x € B 1is continuous and represents the sample
path of a stochastic process. Let y = f(x) and z = g(x). Continuing

the interpretation of f and g given above, one might call x the
uncontrolled process and 2z the controlled process. If x(0) 1is strictly
positive, then x = z wuntil the first time that x strikes a boundary
point of the non-negative quadrant. If the horizontal axis (x“ =10)

is struck first, then the local behavior of the controlled process after
hitting is given by Zp = X and z, = X, i Y, The control v, increases

in the minimal amounts necessary to keep 2z, non-negative, and we have

)
[

the normal reflection pictured in Figure 1. If the vertical axis (xl = 0}

R———
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Figure 1

Angles of Reflection Induced by the Mapping g

vruck first, however, then the effect of the mapping g is slightly
more complicated. The local behavior of the controclled process after
hitting is now given by 7y = %X

¥y increases in the minimal amounts necessary to keep =z

+ yl and 2, = X, - ¥;. The control

1 non-negative,
and we have non-normal reflection in the direction shown in Figure 1.
A final important property of the mapping g is that it is

memoryless in the following sense. Suppose x ¢ B and z = g(x). For

arbitrary T > 0, let zT(t) = z(T + t) and

%p(t) = 2(T) + [x(2 + t) - %(1)]

for t >0, Then

e




A\ > = g ) ) . .
(2) HT(t) = g(XT)(t) for t >0 .

Thus the sample path of the controlled or reflected process =z after
time T is completely determined by z(T) and the sample path of the
uncontrolled process x after time T. To be specific, it is gotten

by applying the reflection mapping g to the process XT. The memoryless
property (2) follows immediately from the characterization of f(x as

the minimal element of C(x) but is not at all apparent from the explicit

representation (1).

5. The Diffusion
Viewing  and § asarvitrary data hereafter (except for the
requirement that § be symmetric and non-negative definite), let

X = [X(t), & > 0] be a two-dimensional Brownian Motion with drift vector

(8}

covariance matrix i and general starting state. If oi = ;6 + ri,
i
b - gL

be constructed by teking

2

and oL = ri SR (see section 1), then such a process can

n Mo
N

X(t) = = ? £330,
X, (t) r 8 () = 1B, (8) + 5t

where the processes Ek are independent standard (zero mean and unit

variance) Brownian Motions with general starting states. In the usual

way, we denote by Py(') the distribution on the path space of X

corresponding to starting state x = (xl,xw)t. H%P. We define the




processes Y = f{X) and 2 = g(X), so that

: = ) >
Z,l(t\ xl(t +Yl(t) : t >0 ,

z,(t) = X,(t) - Y, (%) + oty s

7]

Proposition 1. Z 1is a strong Markov process with state space 8 Ry,

and its sample paths are almost surely continuous.

Proof. From the explicit representation for y = f(x) that was given
in Section 2 it follows easily that f and g both map continuous
functions into continuous functions. Thus the path continuity of 7
follows from the continuity of X. The strong Markov property is immedizte
from (2) and the strong Merkov property and stationary, independent incre-
ments of

Observe that Z(0) = (0) whenever X(0) © 8. Thus P (+)
can alternately be interpreted as the distribution on the path space of
7 corresponding to Z(0)= x, provided that x¢ S. 1In the interest of
characterizing more completely our underlying diffusion %, we conclude
this section with & result showing how its generator operates on a class
of smooth functions. We shall make no further use of the generator of
Z in this paper, however.

Following Dynkin [1], we define Zf to be the set of bounded,
measurable functions f:S - K such that th - f as t { O, where
T,f(x) = B [f(2(t))]. We denote by & the set of f :&  such that

(T,f - £f)/t converges boundedly pointwise as t } 0 to a limit in j{ -

t



The limit is denoted Gf, the operator G thus defined is called the
weak infinitesimal generator of 2 I(or just generator for short),
and £Y is called the domain of the generator.

Let 8 denote the set of bounded, continuous functions f:8 - K

such that all partial derivatives of f exist and are bounded and

continuous on S. Let 4} (for smooth) be the set of functions f C?
that vanish on some neighbohood of the origin. In saying that f has
continuous partial derivatives on the boundary of S, we mean that each
partial derivative approaches a finite limit at the boundary and the limit
is a continuous function of the boundary point. Symbols like rp(xl,ax
are understood throughout to be shorthand notations for suckh limits.

From the path continuity of Z and bounded convergence it follows

that every bounded, continuous f:S — R ig in ;F. Thus ‘! c;a[%

For ease of notation, we define a differential operator D by
Al y 1
= - e ¥ L |
D252 % T 5% % mpty .

The following proposition will not be proved, since it will be subsumed
ty a more general result of Reiman's [5] and it is not used in the
remainder of this paper. A very similar result, Proposition © of

Section 5, will be proved in detail, however.

Proposition 2. Suppose f C ﬁ’ . Then f ¢ t}‘ iff

(3) £,(x,,0) =0 for x; >0,
and
(k) (fl-fq)(o,x,) =0 for x. >y

in which case Gf = Df C AJ

10




Conditions (%) and (4) require that at each boundary surface
(axis) the directional derivative in the direction shown in Fipure 1
be zero. In the definitional system of Watanabe |7 |, such restrictions
on the domain of the generator are used to define direction of reflection
at a boundary point. Thus, from the perspective of Watanabe's theory,
Proposition 2 justifies our statement that the diffusion % reflects
instantaneously at its boundary, the angle of reflection being as shown

in Figure 1.

L, The Limit Distribution

Assuming that the process Z begins at the origin, we wish now

to characterize (and if possible compute) the distribution:
Z(t) < z) for £>0 and zE 8,
It will actuslly be more convenient to work with

®t(zl,z?) = PO[Zl(t) < 2 Zl(tl + Zﬁ(t‘-::: P

1 ==l

defined for t >0 and (zl,zu) & 8. The reason is the following result,

which is precisely analogous tec Lemma 1 of '],
Proposition 3. ot(zl’zn\ = PO{Ml(t) < 2q, ME(t) < 2z, + z,] , where
M (t) = sup (X, (w)},
O<u<t
M,(t) : sup Mﬂv)+xﬁuﬂ.
- 0O<vsu<t

L

- S s
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Proof. The argument is so similar to the proof of Lemms 1 in (2] that
we shall merely sketch 1it. First use (1) to write down an explicit
representation for Z(t) = (Z](t), Zy(t)), observing that the general
representation simplifies considerably when X(0)i=i0s et H >0 ‘be

fixed. Assuming that X(0) = O, observe that (X(u), 0 < u < t] has

the same distribution as

{X(t) ~ X(t-u), 0 <u<t},

since X has stationary independent increments. Making this substitution
in the representetion for Z(t) and simplifying, we obtain the desired
proposition.

With X(0) = 0, it is clear that Ml(-) and Mp(-) are almost

surely non-decreasing, so the limits

M] = lim ff] L E) and M, = lim M _(t)
2 t o t—o oo
exist almost surely (PO>. Furthermore,
Ft('\ - F(z) and ?t(:) - ®(z) g5 t > w

for each 2 = 8, where

(5) F(zy,2,) = Py(M, < 2., M,-M, < 2,)
and
(6) r(zl,z.\ FO[Ml <2y M, <2 2, for (xl.{,l 3




Finally, from the strong ilew for Brownian Motion it follows that

M1 " G i i Q; whereas M, <« Iff . <0 and D

\Al = ) ‘1 .41

Thus we have the following.

Proposition 4, The limit distribution F is proper iff | 0 and

By definition, M] is the maximum of the unrestricted Brownian

Motion X When

X iy <0 and XI{OI = 0, M, is known to have an

1L
exponential distribution with mean Oi/ﬁl“ll’ and this gives the first

T

marginal distribution of F. The same result can be obtained by observing

that Z is just X modified by a reflecting barrier at zero, and then

1
using well known results for reflected Brownian Motion. WNote that

is not just X,. modified by a reflecting barrier at zero, In fact, the |

one-dimensional process Z is not Markov.

A Related Diffusion Prccess

) . ' / e . |
Lt XEiE) = = %t fer: & 0, and let P;t' be the distri-
] |
bution on the path space of X* corresponding to X*(O x for x R . ’

(This is eagier than writing negative subscripts.) Next let

Y%(t) = sup {+x*(u)}’ ; t
O:}x;i,

anc

=3
-
e

nf‘(tﬂ (\:‘,’{,.T‘\ - Y“'(‘L'A < 0}

-— 1 -—

’




with T* = o if the indicated t-set is empty., Now define a process

Z* = {(2*(t), t > 0] by setting
(

Xx(t) - YX(t) i 0<% =0
z¥(t) = ¢
X*(T*) - YKA}(TA‘) if By i,
o2 ;
va;(t) + Y!;(t;) e ORse Ge i
7x(t) = <
XX(T*) + YX(T*) if L A

Observe that, with 71 defined in terms of YX in this way, ¥+ i the
minimal function of X* such that Zf(t) >0 for all t > 0. Here-
after we restrict attention to paths of XX that begin in the non-negative
quadrant, this insuring that 2Zx(.) < S.

The process Z* is obtained from X¥* in two stages.
First, we impose an instantaneously reflecting barrier at the axis X* @,

the angle of reflection being as shown in Figure © below. Second, an

(SO0

Figure
Angle of Reflection for the Process
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gbsorbing barrier is imposed at the axis ﬁi = 0, The proof of the
following is virtually identical to the proof of Proposition 1, so we
ielete it.

Proposition 5. Z* is a strong Markov process with state space 5, and
its sample paths are almost surely continuous.

7%

Let G* be the weak infinitesimal generator of and let
L be its domain. Let g be defined as in Section 5. Finally, define

a differential operator D* by

Proposition €. Suppose f 5 . Then f € B* iff {fﬁ-f!\(xl,O: 0
for x; > 0. In this case, G*f{z) =0 for z = (0,z,) and G*f = Dxf

¢

otherwise.

Proof. Assume f € © and let T f(z) - BX[£(z%(t))] for z< S and

G
t = 0y "We first determine the conditions under which LT;Y = P

converges pointwise as *+ ¢ O.

For each interior point 2z of 8, let hL(r denote the prob-
ability that, starting in state =2z, the boundary is struck by Z¥

before time t. Using nothing more than the first exit distribution

of one-dimensicunal Brownian Motion (because our state space is a rectangle),

it is easy to show that h (z) ot for each interior point =z. Thus




T%f(zU = E;lf(Xn(t))J + oft) ,

because 2Z*(t) = X*(t) until the first hitting of the boundary. It
follows that lTéf(z\ = flz)] /6 D%t (z) as t ¢ 0, since D¥ 1s the
generator of X¥ on KZ. (see, for example, section 5.2 of 8 [4].)

If 2 '=(0,z,) with z. >0, then T{f(%i el Por alls of. S0,

¢

since 2*(t) = z for all t > 0. Thus iT{f{x} ~ £(2)]/t -0 as t &

To examine the boundary =z, = O, we need some more notation. For purposes

of this proof only, let

M*(t) - sup [X, (u) - X, (0)] sup X*(0) - X*(u) ]

for © > 0. Thus Yx(t) = [M*(t) - Xﬁ(03i+ for t > 0. Observe that

the distributions of the Brownian maxima M*(t) and M(t io not depend
on X#*¥(0). Furthermore, the maximum distribution is known explicitly,

and direct computation reveals that

(7) EX[M*(t)]/t »~ and EX[M(t)]/'t - as t 1 0
(8) E;{(r«(t\)‘?/t o and  EX[(M(t)) ]/t =0 as t 40
Until further notice, let =2 (xl,()\ with =z, > 0. It is well known

that X*(t) + M*(t) then has the same distribution as M(t! for eeach




t > 0. (See the proof of Proposition % above.) Thus,

(4) BX[ (X*(£))° + 2XA(t) M*(t) + (Mx(£))"] = E*| (M(1

Dividing both sides of (9) by t, letting t ¢ O, and uzing (¥, we then

obtain

(10)  EX[X*(t) M¥(t)]/t »- = o as  t 40

(t) Xi(t) ~ X4(0), we need

Finally, letting KX{_

2 \ Sy 1
{ ¥ ; / \ =
CEL) E'/“A\Xi\t) Me(t) ]/t - - = oy as el
For the case Hy .. = 0, this is proved as follows. First observe thatl
(12) EX[AX%(t) M¥(t)] = EX[AX*(t) (M(t) = X%(t))]

z o & ]

for t > 0. (See again the proof of Prcposition above, Also, symmetry
gives (when = =)

.Ul

Combining (17) and (15) gives (11). The general cuse is proved by reduci

it to the driftless case through obvious bounds.
Assuming as above that X<(0) ZX(0) Qf “&nd’  ZX(0 0, we

define /Xi(t) as before ani

1y




(1k) AZ{(t):—ﬁ i“” - M*¥(t), AZX(t) = X*(t) + Mx(t)

(15) T%f(z) & E:‘f(;l + A7

the o(t) term on the right corresponding to the event {T*

an application of Tayvlor's Theorem (with the exact form of the remainder
Y

gives, when combined with (1

(16) xf(z)
(16 thaz,

where Rt(..\ is a remainder Furthermore,

partial derivatives of f lg are bounded, it is

R, (z) = o(t), using just crude bounds on the third moments
&
and AZX(t).
As we shall indicate shortly, each of the second-orde
v 4

the right side of (1f/) converges to a finite limit

t and let t ¢ 0. The first-order terms can be rewritten,




-

o

Thus it follows from (7) that LT;f(z) - f(z)]/t converges to a finite

limit iff f.(z) - fl(m\ = 0. When this holds, we combine (16) with (1k)

and (8)-(11) to obtain
(17) (TXE(2) = £(2)]/t > D¥(z) - T e W T

as t ¢ 0. In this calculation, we have also used the obvious relationships

Ei‘ (¢ Y1’(t)\ |/t -0 as b i 0,
Ex[ (aX*(t) Xx(t)]1/t - o), 58 & 4 0;
C i e 1
and : .
EX (X*(t)) 1/t » 0o, as t 4 0,
Since (f - f‘l) O along the axis 2z, = 0, it follows that £ e + 8
along this axis, and hence the second term on the right in (1 is zero.
In order to complete the proof, we need only show tha T{r( -1
is bounded as a function of t and 2z ¢ S jJjointly, at least for sufficiently
small t. It is easy to show that E* (\Zi(t}) I/t, E* ;ﬂ%fL *E) ]/%,;
and E;‘(ﬁ?ﬁ(t)) ]/t are bounded jointly in 2z and t. Thus, from

Taylor's Theorem and the definition of Z: , it will suffice to show that

(£y(2) EXlazx(t)] + £,(2) EX[azx(t)]}/t

1

is bounded jointly in t and 2. Finally, using the fact that

AZR(E) = fo(i(t; - Y*(t) and Z¥ (1) Xx(t) + Y*(t

1




i R

for t € [0,T%], together with the boundedness of the second-order

partial derivatives of f and the fact that (f - f]‘(n 501 0, we
2 !

find it suffices to show that

{z EX(YX(t)]) /¢ = {2 BX[ (M*(t) - 2.) |1/t

is bounded jointly in t and =z = (z,,z ). But this is easy to verify

from the known first passage and maximum distributions of (one-dimensional

Brownian Motion, so the proof is complete.

6. A First Passage Problem

We now show that ®(z) = PX{T* = o}, Thus, determining the limi
distribution of Z is equivalent to solving a first passage problem for

7%,

Theorem 1. ¢t(z) = PXT* >4} for t. >0 and A S.

Corollary. ®(z) = PX{T* =} for zC 8.

Proof. We first rewrite Proposition 5 as

(18) () o= P {7z = Ml.’t} >0, 2y * 7, = M,(t) > 0l.

8V Al B

Next observe that

(19) -M_(t\ 7, = 8UP [xl_(u\‘t 5 ot R —XL(u'H




¢
K (20) Z) * 2z, - M. (t) 2 - sup (X, (v) + X, (u)l
; ) : O0<v<u<t
inf { - X (v)] 4 -7 X ()1} &

Thus, defining

Mx(t inf {XEGEr) t, 0
l O<u : 1 5
MX(t) inf  {XX(v) P xx(u)) , i G
O:_V'_U_T,
we combine (15)-(20) to obtain
(21) q«,t(,‘, - pf{ui(t) > 0, MX(t) >0} = I'{‘H.;.H N = V)
Finally, observe that
Mi(t,AM'v(t,‘ inf (X¥(u) A [X*(u) + inf Xzx(v)l)
' g<u<t . ( \
inf JX%’H - Y¥(u n P
O<u<t '
Combining this with (21) and the definition of T* compleves the proof
of the theorem. The corollary follows from the fact that ¢ (z) ¥ ¢(z)

as t t o, (See Section 4). This completes the proof.

Now let . be the set of continuous functions f£:5 - 1R which
0

satisfy the following two conditions,




£ (22) f exis

All partial derivatives of

on S except (possibly) at the origin.

Off of every open neighborhood containing the origin,

of its pertial derivatives are bounded.

{ and are continuous everywhere

£

From (23) and the continuity of f it follows that f is bounded.

Theorem =. Assume Hy 0 and Uy + 0. Suppose t C satisfies
(2k) {¥. - ?l‘f' ,0) ) for z, >0,

(25) D*¥ = 0 except (possibly t the origin,

(26) Y(Zl’ZA\ —» 0 uniformly in as T

(27 W(Zl’é. — 1 uniformly in as 2, 1 ‘

Then ¥ = .

Remark 1. There is strong reason to believe that the converse is also true,
meaning that ® necessarily satisfies (0L)-(27). From the definition (C),

it follows that ¢ satisfies (20) and (27). It also follows
that © satisfies (24) so long as both partial derivatives e

from the corollary to Theorem 1 it follows easily that o

To prove that @ satisfies (25),

belongs to a c¢lass of reasonably smooth functions |

C?.

it thus remains only to show

Xist. Finally,

and
£

Like

¢

0O




such that D*f 1is bounded) to which Proposition ¢ (G*f DXf) can

be extended.

Remark . It is important to note that Theorem o’ require: { C:O

but not ¥ «¢ C. In Section 9 we present an example where ¢ is in c?'

and satisfies (24)-(27) but where all partial derivatives of o are ;
)

unbounded in the neighborhood of the origin. ?
1

Proof. Suppose O < . < 1, and assume ¢ < Zf(O) <At /et Tet VT - ibhe'the

first time that %¥ hits either « or 1/e. Then T 1is a stopping
time for %%, and it is easy to show E;(T‘) < o for all such that
€ <zg < 1/c. Prcceeding exactly as in the proof of Proposition €, one

can shown that the function V¥, restricted to the strip < 29 1

is in the domain of the generator of the process “Z*, modified by absorbing

barriers at ¢ and 1/¢. Moreover, GC*I = DX¥¥ = 0, where G* now denotes

the generator of the modified process. pplying Dynkin's formula, we

then have
l1|
(28) Exiw(z*(T ))] = v(z) + EX [ G*v(Z*(t)) dat = ¥(z)
i : S0
Observe that T —-»T¥ almost surely as ¢ ¢ O, Also, from (7¢) and

(27) it follows that the left side of (28) converges to P*(T% = )

as } 0. Thus, letting ¢ ¢ 0 in (P8) and using the Corollary to

Theorem 1, we obtain W¥(z) o(z).




3
7. The Density Function
The remainder of the paper consists ol detalled ( wtions for
3 .
which subscripted variables are clumsy. Thus points in | be denoted ]
(x,y) hereafter, rather that (x,,x ) or (z,2z ). Let ﬁ be the set ;
1 1
of functions f:5 -» IR that are continuous except (possibly) at the origin ;
I}
and that satisfy | ) and (23). A function in Zf' may be unbounded in !
the neighborhood of the origin. '
i
£
]
Theorem 5. Assume ;. O and py * oy < 0., There exist: 2 funetion §
' .f
- » . tin ’ o . o g .
{ ao satisfying (24)-(27) iff there exists f 6 satisfying :
:
)
(29) D¥f O on the interior of S , l
f
t‘
!
!
. G ¥ . . ; :
(30) i = e £1(x,0 0O fOr X o, !
, 1551 : ?
|
i
: o T veds 1 i
1 ) g - - (
(51) = e s ] (= o f - Y 7
Ak 1 1 .
' {32} f 0 and f(x,y) dx dy
( 0

In this case, T ¥. - ¥ _ and

% Xty-u
1 (=553 7y = f(u,v) dvdu for (x,y) € S.
g 0

Corvllary. 1f £ satisfies (29)-(32), then f is a density for the

limit distribution F,.




Remark 1, The comments follcowing Theorem 2, when combined with Theorem B f

suggest that (29)-(5) are both necessary and sufficient for the density of

i
the limit distribution. |
{
|
|
!
Remark 2. Again we emphasize that the theorem does not regquire f f C 1
In the example of Section 9, both f and its partial derivatives
are unbounded in the neighborhood of the origin.
Proof. First suppose that V¥ ¢ 60 satisfies (Y ,-(3 and define
= “11. - Y, ., except at the origin (where the value of f can be set |

arbitrarily). From the definition of &O it follows that f ﬁ’.

Also, since (‘}'1 - ¥.)(x,0) = 0, we have

N Z=X
(34) — W(x,z-x) = (¥, =¥ )(x,z-x) ‘ fx,v) dv
Y% 1 i = i
: i
S PR : el pe . i
for z > x > 0. WNext, since %(0,z) = 0, we have ‘
|
i
i
“
N X z-u i
(39) P(x,z=x) = | -y y(u,z~u) du f J }
1 f
0 0 0 !
1
for 2z > % 0, and is equivalent to )= N from we directly 1
compute that D+ “f ‘on the intzrior of §, where

piflx,vidv DXf(u,y)du + (= o + o, ) £(x,¥),

0 A




o | e 1 ; » ; . ¢ .
D*f (=g + « t+ = g )f. = (, * . )f on the interior of
' 1 ] 1
From the fact that D*¥ = O on the interior of § we hav
Y 3° 2 .
y . 3 / \ ) 2) -~ xr
(36) O (\Z\—V— - -——;—'\ DXV (x,y) \\;C—‘-y- - ) L oleent
5 Ty Y
(2 (2 = ) PR x.0) (R £(%.0)
B R  e Tl
: A i 3 E2on
(38) 0 = D*¥(0, ¥ o £(0,y).
Directly cowputing the right-most expressions in (36)=(2 Prom (33)s
obtain (24)-(31). Finally, Theorem gives Y = @&, and then from
and the definition (€) of & it follows that f 1is a density for t
proper distribution F. Thus f satisfies (32).
F For the converge, suppose f { ) =2 211 e
a2 / Z N . : 12 3 { i (ZZ \ X 4 i
by (33). It is immediate from (32) and (35) that 38 ‘ ]
(26) and (27). Thus we need only show DXV 0. Again we have -
the second equality in each case following from the fact that |
! by (33), and the triple of first equalities being equivalent t -
But (36)-(* are necessary and sufficient for D* K (a constant
1 Thus we need to show X 0. Whatever the value of K, the proof of
b
Theorem need be altered only trivially to establish that
(59) I (Z*(T )) KE*(T

e

1

]

:
Je




When , <O and , + ., <0, it is easy to show that Ef(T ) —»o

as « { O whenever 2y 2 0. Since ¥ 1is bounded, it follows from (359)

that K = O.

8. Exponential Solutions

Since our basic differential equation D#*f O has constant
coefficients, it is natural to seek solutions of the separable exponential
form

(40) £z, 7) = & e—(HX+ry) 2 (x,y) € 8.

Proposition 7. Assume Hy < 0O and - * uy < 0. There exists a solution
\ : . YL by h - : :
f of (29)-(32) having the form (ho) iff = oy * 0, ). in which case |
’ P : i ;
Y = 2 | /o and £ = 2}y + | ol . |
; }U]_’ 1 ]»1 Myt /0. 15

Remark. A solution f of (29)-(32) can have the form f{x.y) g(x) hiy

only if f is of the form (L0O). This follows easily from the boundary

conditions (30) and (%1). Thus the proposition implies that =— o° + 0

is necessary and sufficient for the existence of a ;eparable solution.

3
Proof. Assuming the form (L0), conditions (29)-(%1) are equivalent to
(h]) ‘;_l‘ 0‘41’4‘1: e ()J]’j'tl] 4 }‘- o 'v + “l", - l“ 1 0




P

2 5
(42) g @ ke B s O
and
3.2 %
(43) 5 0,0 (3 0] + oy )+ ™ 0
Multiplying (42) through by (which must be positive if f 1is to be a
Y : 1
density) and subtracting this from (41), we obtain = oqu t q e Comparing

this with (L3), we see that (41)-(45) can hold simultaneously iff

1 y y / .
5 9y # oy, 0, in which case « = !“1'/01' Substituting this value
of a in (L2) gives | - ”I“l 4 “Q,,u',

9. Another Special Cacse

When the density f does not have the simple forw (LO), computing
it explicitly appears to be a difficult problem, Oply one other specisl

case has been solved thus far.

Proposition 3. ssume oiu = 0, Gi = 0. = Ly . = 0, and by < 0, Let

i = lugl. Then the density of the limit distribution F is

. =X =1/2 =ur(x,y) ) e
fix,y) = Ke * [r{x,¥)] e oY) eosl= a(x,y) 1,

2 S/ - ] 1 =
where r(x,y) = (x” +y ) ’%, 6(x,y) = tan 1(y x) and K S (2y)
Remark. The slightly more general case Oi - ol 0 can of course be

accommodated by a rescaling.




Proof. In this case our equations (24) through (32) for f become

(44) % fll o % f‘“ Hufy = 0 on the interior,

Ve i : : :

(45) =7F (x,0) =0 for x>0

1 il e \ ;

(L6) [ £a-% = 8+ 4f7(0,5) =0 for y >0
Letting g(x,y) = e*" f(x,y), we re-express (L) through (46, in terms
of g as
(L7) o 81 * &, T 1B on the interior,
(L48) 5.06,0) =0 for x >0
(49) (g, + &, + 1el(0,y) =0 for y >0
Finally, we transform to polar coordinates by letting h(r, g1,

The usual transformation formulas then give (L7)-(49) in terms of h as

o ) wl o

(50)  h(8) + T hl(r,n) + h]](r,f)) Jb(e, o

(51) r h,(r,0) =0 for >0,

(52) h](r ) - r-lhj(r, n/2) + uh(r, )} =0 for r>0

i
¥




T

Hypothesizing & solution of the form h(r,8) = @(r) ¥(6), we find that

-l".‘ / /. \ . .. :
p(r) = r exp(=ur) and Y (8) = cos(8/2) satisfy (50)-("2). Reversing
¥ P b / ¥ 1

the transformations then gives the desired formula for f except that

the normalization constant K has not been determined. We need

o0 o© o« o ll/ + / 'l
" : e s a=d/2 =l xtr(x,v) . :
1 [ flx.y) axdy =K [ [ lr(x,y)] e H Y coel(L6(x,y) jaxdy
o O 0 0
AP l+cos O1r 1
- - - TCOS8 | ,
K J Y e Cus(—‘- ) )r drd6
(0] 0]
Let A(8) = u[l + cos 8], so A(8) 4 Observe that
oo ’ w
1 ~Al8)r -3 /02 1 -u =5/
f = e e =R - (Slg) [ wu e du = (=) (6
0 0]
A = e
5 VT A (8) == ¥ [24 cos (=9)]
1 =5 /0 -5,1
= = o1 (2u) 7'° cos (5 0)
Thus we need
G, T o P NS T 1 1/ - ]
1 K= (2w) sl cos (= 0)do = K[= u (2 tan(—
0 & .
=1/2, . 3/2
Thus K = 25 B iT )

50
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10. Concluding Remarks

Probably the best known work on multi-dimensional diffusions with
boundaries is the seminal paper by Stroock and Varadhan ¢ |, Otrictly
speaking, our process 7 lies outside the Stroock-Varadhan theory, because
its boundary fails to meet their smoothness requirements. The same is true
of the theory developed by Watanabe [7].

In Section 1 we have discussed only the fact that the equilibrium
distribution of the diffusion Z approximates the distribution of W
for a tandem gueuing system, where W 1is the equilibriwn waiting time
vector. One can, however, show that in heavy traffic the distribution of
the entire (vector) waiting time process is approximated by the distribution
of Z in the following cense. Assume a stable tandem queving system

(¢ > 0), and define a two-dimensional process

where |[-] denotes integer part. Now consider a secuence of stable
tandem systems with ¢ { O. Under ascumptions like those employed in

our previous paper (2], and using very much the same methods, it can be

shown that (¢ converges weakly (in the appropriate functiorn space) to
Z as @V 0. In a similar vein., one mignt examine the normaliced
(vector) queue length process
W(t) = /), txo0,
where Q(t) = [Q,(t), @ (t)] and Q (t) denotes the number of customers
1 K
51




s

ey

-
present at station k at time t. Tglehart and Whitt | 5| have proved :
heavy traffic limit theorems for processes of this form associated with %
a general class of acyclic gueuing networks. (Their normalizations,
however, are expressed in a rather different form.) If one specializes
their results for v to the case of two queues in tandem, cne finds
that , converges weakly to Z as « { O, where % is essentially the
same diffusion studied here.
The last paragraph suggests that we might be interested in quantities
associated with 27 other than its equilibrium distribution. 1In particular,
the quantity @t(') provides an approximation for the transient waiting
time or queue length distribution of a tandem system, provided that the
system starts empty and heavy traffic conditions prevail. Thecrem I
and Proposition ¢ together suggest that lt(-) should satisfy :
4
Dfb, (2) = == ® {z) =0 for © >0 and 2z in the interior of S,
t i oy i

together with the boundary conditions Lt(O’ZH\ = 0 and :

e « <o) @ (2.,0) =0 for >0 and : O 4 | §

b 92q R 1L ‘

|
and the initial condition #O(') 1. We shall make no attempt to prove
this, except for the following comment. If a sufficiently swooth solution
can be found,then Dynkin's formula CaJlb&USGA to prove that this solution ]
is PL(-\. just as in the proof of Theorem 2,
4 i

N
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ABSTRACT
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Consider a pair of single server queues arranged in series.y (This

is the simplest example of & gueuing network.) In an earlier paper (2],
a limit theorem was proved to justify a heavy traffic approximation for

the (two-dimensional) equilibrium waiting time distribution. Specifically
the waiting time distribution was shown to be approximated by the limit
distribution F of a certain vector stochastic process Z. The process Z
was defined as an explicit, but relatively complicated, transformation of
vector Brownian Motion, and the general problem of determining F was

left unsolved.

It is shown im-this-peperythat Z is a diffusion process (con-
tinuous strong Markov process) whose state space S 1is the non-negative
guadrant. On the interior of S, the process behaves as an ordinary
vector Brownian Motion, and it reflects instantaneously at each boundary
surface (axis). At one axis, the reflection is normal, but at the other
axis it has a tangential component as well. The generator of Z is cal-

culated.

It is shown that the limit distribution F is the solution of a
‘irst passage problem for a certain dual diffusion process Z¥*¥. The generator
of Z% 1is calculated, and the analytical theory of Markov process is used
to derive a partial differential equation (with boundary conditions) for
the density f of F. Necessary and sufficient conditions are found for
f to be separable (for the limit distribution to have independent com-
ponents) $7Th1: extends slightly the class of explicit solutions found
proviously 4 (2 ). Another special case is solved explieitly, showing
that the density is not in general separable,

£

-~

-

UNCLASSIFIED
SECURITY CLASSIPICATION OF THIS PAGE(When Date Entered)




